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Abstract

Flaw detection in non-destructive testing, especially in complex signals like ultrasonic data, has thus far relied heavily on the
expertise and judgement of trained human inspectors. While automated systems have been used for a long time, these have mostly
been limited to using simple decision automation, such as signal amplitude threshold.

The recent advances in various machine learning algorithms have solved many similarly difficult classification problems, that
have previously been considered intractable. For non-destructive testing, encouraging results have already been reported in the
open literature, but the use of machine learning is still very limited in NDT applications in the field. Key issue hindering their use,
is the limited availability of representative flawed data-sets to be used for training.

In the present paper, we develop modern, very deep convolutional network to detect flaws from phased-array ultrasonic data.
We make extensive use of data augmentation to enhance the initially limited raw data and to aid learning. The data augmentation
utilizes virtual flaws - a technique, that has successfully been used in training human inspectors and is soon to be used in nuclear
inspection qualification. The results from the machine learning classifier are compared to human performance. We show, that using
sophisticated data augmentation, modern deep learning networks can be trained to achieve superhuman performance by significant

margin.
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1. Introduction

Automated systems have long been used for flaw detection
in various Non-destructive evaluation (NDE) systems. The au-
tomated systems provide consistent results and do not show the
variation commonly seen in human inspectors due to fatigue,
stress or other factors. However, the traditional automated sys-
tems have relied on simple decision algorithms such as a sig-
nal amplitude threshold. In more demanding inspection cases,
such as the typical ultrasonid inspections, the human inspec-
tors achieve far superior inspection results than the simplistic
automated systems. Consequently, in most of these inspections
the data analysis are currently analyzed by human experts, even
when the data acquisition is highly automated. Such analysis is
time consuming to do and taxing for the personnel.

The key problem with more sophisticated automation has
been, that the work of the human inspector does not lend it-
self to simple algorithmic description. The inspectors acquire
their skill through years of training and utilize various signal
characteristics in their judgement (e.g. the signal dynamics).
Machine learning (ML) systems can be used to automate sys-
tems, where direct algorithmic description is intractable. The
recent improvements in ML algorithms and computational tools
(GPU acceleration, in particular) have enabled more complex
and powerful models that reach near human-level performance
in tasks like image classification and machine translation.

Early attemps to use machine learning for NDT flaw detec-
tion and classification focused on using simple neural networks
to classify various types of NDT data. Masnata and Sunser
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(1996) used a neural network with single hidden layer to clas-
sify various flaw types (cracks, slag inclusions, porosity) from
ultrasonic A-scans. Before learning, the A-scan was reduced to
24 pre-selected features using the Fischer discriminant analysis.
Chen and Lee| (1993) used wavelet decomposition, to obtain
features from A-scans and reported goal classification, while
the training and testing was done with limited data set. |Y1 and
Yun| (1998)) similarly used shallow neural network to train flaw
type classifier with a larger data set. Although in many cases
this early work reported high classification accuracy, the results
proved to be difficult to scale and to extend to new cases.

One of the issues with developing ML-models for defect
classification has been the limited availability of training data.
Liu et al.|(2002) used finite element simulation results to pro-
vide artificial NDT signals to augment training data.

With the increase in computational power, the used machine
learning models have become more powerful. Many authors
have reported good results with shallow models like support
vector machines (SVM’s). While these models offer high clas-
sification capability, they also require a pre-selected set of fea-
tures to be extracted from the raw NDT signal. [Fei et al.[(2006)
used wavelet packet decomposition of ultrasonic A-scans to
train SVM for defect classification in a petroleum pipeline. Sam*
bath et al.| (2010) used neural network with two hidden layers
to classify ultrasonic A-scans using a hand-engineered set of 12
features. [Shipway et al.| (2019) used random forests to detect
cracks from fluorescent penetrant inspections (FPI). |Cruz et al.
(2017) used feature extraction based on principal component
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analysis to train a shallow neural network to detect cracks from
ultrasonic A-scans. He reported good classification analysis
with only 5 extracted features, and computational efficiency that
makes such classification feasible as on-line evaluation support
for inspector during manual scanning.

Kahrobaee et al.| (2018) demonstrated the use of machine
learning to achieve data fusion by learning separate classifi-
cation networks from different NDT data and using a com-
bined classifier with the results from these separate classifiers.
It is often the case in inspection, that more than one inspec-
tion method is used. Ability to take better advantage of the
multiple data sources would thus be advantageous. Also, such
approach could be used to discriminate between different flaw
types, especially when the training data is too limited or sepa-
rate to allow direct learning of classifiers to separate between
similar flaw types.

The machine learning classifiers have been used to wide
variety of NDT signals and classification cases. [Tong et al.
(2018) used deep convolutional neural networks (CNNs) to de-
tect subgrade defect from ground penetrating radar signals. For
NDT methods, that provide image or image-like raw data, deep
CNNs used for image classification have been applied with lit-
tle modification. [Dorafshan et al| (2018)) used the AlexNet
(Krizhevsky et al.,2017)) deep CNN for detecting cracks in con-
crete from visual inspection images.

Convolutional networks have recently shown great success
with various image classification tasks (Marcus, 2018). The
convolutional architechture lets the networks to learn position
independent classification. The recent deep architerctures have
shown the ability to learn increasingly abstract representations
in higher layers, which obliviates the need for hand-engineered
features (Zhang et al., 2016). These features make the deep
convolutional networks also interesting for the flaw detection
in NDE signals.

Recently Meng et al| (2017), [Zhu et al| (2019) and Mu-
nir et al.| (2018b) used deep CNNs for defect classification in
ultrasonic and EC-data. |Meng et al.| (2017) used deep neural
networks with an SVM top layer for enhanced classification ca-
pability. The classifier was used to classify voids and delam-
ination flaws in carbon fibre composite material. Before pre-
sented to the CNN, the raw A-scan data was decomposed using
wavelet packet decomposition and the resulting coefficients re-
organized into 32x16 feature matrix. Thus, the CNN classified
the A-scans separately.

Munir et al.| (2018a) used deep CNN’s to classify austenitic
stainless steel welds. The training data was obtained from weld
training samples containing artificial flaws (i.e. solidification
flaws). The data-set was augmented by shifting the A-scans in
time-domain and by introducing Gaussian noise to the signal.

Zhu et al.|(2019) used deep CNN’s to detect cracks in eddy
current signal. Also, drop-out layer was used to estimate the
confidence of the classification, which is an important oppor-
tunity in using ML in field NDT, where the reliability require-
ments are very high. This work is also notable in that the raw
signal database was exceptionally representative with NDT in-
dications representing plant data for various defect types (Udpa
and Ramubhalli, [2009)).

In summary, the current state of the art for using machine
learning in NDT classification may be seen to focus on two
distinct aims. Firstly, modern shallow ML models (e.g. ran-
dom forests) with advanced feature-engineering are used with
the aim to develop computationally lightweight models that can
be implemented on-line to aid inspector in manual inspection.
Secondly, deep CNNs are used to learn from raw NDT signals
without the need for explicit feature engineering. The recent
work on deep models takes full advantage of recent advances in
models developed for other industries and shows good results
across different NDT fields.

For ultrasonic testing, the existing machine learning mod-
els have mostly involved classification the single A-scan level.
This is a natural approach for many applications, such as the
previously studied manual inspection (Cruz et al., [2017) or for
C-scan style classification of large inspection analysis as done
by [Meng et al.| (2017). However, in many inspection cases,
mechanized inspection and electronic scanning using phased
array ultrasonic systems provide rich data-set where adjacent
A-scans can be analysed together to provide more information.
Machine learning application to such data-sets have not been
widely published. In the present work, we present application
of deep CNN for phased array ultrasonic data, where number
of adjacent A-scans are considered together for improved flaw
detection capability.

Common obstacle for using powerful ML models in NDE
classification is, that the available flawed data tends to be scarce.
Acquiring sufficient representative data-set would in many cases
necessitate artificially manufacturing large set of flawed sam-
ples, which quickly becomes infeasible. Data augmentation
is commonly considered a key tool for successful application
of ML for small data sets and some authors have used data
augmentation (Munir et al., |2018a) for ultrasonic data. In the
present work, we significantly expand on the previously pub-
lished data augmentation schemes for ultrasonic inspection by
using virtual flaws to generate augmented data sets. The use of
virtual flaws enables generation of highly representative aug-
mented data set for ML applications.

Finally, the key requirement for adaptation of ML machine
learning models in many industries, is to show how they com-
pare with human inspectors. Especially in high-reliability in-
dustries like the nuclear and aerospace industries, there’s com-
mon requirement to employ best-available means to guarantee
structural reliability. In practice, this would mean that the ML
models would need to show performance exceeding that at-
tained by the human inspectors or to show performance that
meets the current requirements set for the traditional inspection
systems (e.g. show required agy/9s performance, as commonly
required in the aerospace industry). However, in many cases
even the human inspection performance is not quantified and
known with sufficient reliability to allow direct comparison to
developed ML models. In present work, we used human perfor-
mance data obtained from previous research (Virkkunen et al.|
2017) and developed the machine learning models to work on
comparable data thus enabling direct comparison between hu-
man inspector and modern machine learning model.



1.1. Virtual flaws and data augmentation

The problem with ultrasonic training of machine learning
models is the scarcity of representative ultrasonic data. Sam-
ples with real flaws are difficult to come by and in terms of nu-
clear power plants can be contaminated making them challeng-
ing to use. Mock-ups can be made with representative flaws,
but production of such mock-ups is costly and time-consuming.
The mock-ups also tend to be specific to a certain inspection
case. Virtual flaws can be used to generate sufficient represen-
tative flawed ultrasonic data from limited set of mock-ups and

flaws (Virkkunen et al.| 2014, 2016} [Svahn et al., 2018}, [Kosk-
2018). In essence, the flawed sample is scanned

and the ultrasonic data recorded. From the recorded data the
flaw signals are extracted by comparing the signal data point by
data point to a selected flawless area. The flaw signal extracted
this way is guaranteed to be representative, since it is recorded
from an existing flaw. The extracted flaw signal can then be im-
planted into different locations of the scan data, point by point,
allowing the generation of new virtual flaws. In addition, the
depth and length of the flaw can be altered and various other sig-
nal modifications can be achieved. The flaw signals extracted
can be moved to different samples. Flaw signals acquired with
different ultrasonic parameters can be made compatible with
different files. Using the virtual flaws augmented data gener-
ation is virtually unlimited and ample representative training
data can be generated for the training of ML models. The ap-
proach has some similarity with synthesized learning cases used

by Bansal et al.| (2018)).

1.2. Estimation of NDT performance and probability of detec-
tion (POD)

NDE is most valuable when used in area, where its expected
reliability is very high. Consequently, measuring the perfor-
mance of an NDE system and its reliability, in particular, is
demanding. Demonstrating this high reliability requires high
number of evaluation results on relevant targets and, thus, high
number of test samples with representative flaws. Providing
these flawed test samples is costly and thus different method-
ologies have evolved to optimize the use of the available test
blocks.

Currently, the standard way to measure NDE performance
is to define a probability of detection (POD) curve and, in par-
ticular the smallest crack that can be found at level of sufficient
confidence, typically 90% POD at 95% confidence (ago9s). Ex-
perimentally, the POD curve is determined with test block trials
and a set of standardized statistical tools (Annis}, 2009} [ASTM,
2015). .

In this paper hit/miss method was selected due to nature of
the test set-up. While signal amplitude can be used with fewer
test blocks, it does not include the effects of inspector judge-
ment on the NDE reliability. Especially in noisy inspection
cases such as austenitic stainless steel welds, flaw detection re-
lies on pattern recognition, not just signal amplitude and a clear
threshold, thus the result is filtered by the inspector. This was
observed also by [Virkkunen and YTitalo| (2016)). For the present
study and comparing human and machine inspectors, it’s vital

Figure 1: Scan set-up with Zetec pipe scanner, extension fixed to the right side
for scanner mounting.

to include the judgement effect and thus, the hit/miss approach
was chosen.

2. Materials & Methods

2.1. NDT Data

Inspected specimen for data-acquisition was a butt-weld in
an austenitic 316L stainless steel pipe. Three thermal fatigue
cracks with depths 1.6, 4.0 and 8.6 mm were implemented in
the inner diameter of the pipe near the weld root by Trueflaw Itd.
and scanned with ultrasonic equipment. An austenitic weld was
chosen as a test specimen due to being common in the industry.
In addition austenitic weld has increased inspection difficulty
due to noise caused by the anisotropy of the weld structure.
Inspection method used for data acquisition was Transmission
Receive Shear (TRS) phased array, one of the common methods
used in inspecting of austenitic and dissimilar metal welds. The
scan was carried out by using Zetec Dynaray 64/64PR-Lite flaw
detector linked to a PC. The probes used were a Imasonic 1.5
MHz 1.5M5x3E17.5-9 matrix probes with central frequency at
1.8 MHz, element dimensions 3.35 x 2.85 mm and element ar-
rangement as 5 X 3 elements. Used wedge was ADUX577A
used to produce a shear wave efficiently. One linear scan with
no skew angles was utilized. The ultrasonic wave was focused
to the inner surface of the pipe and the probe was positioned in
a way that the beam would be focused directly to the manufac-
tured cracks. Coupling was applied through a feed water system
and the pipe was rotated underneath the probe to assure con-
stant and even coupling between the probe and the pipe. Probe
position was carefully monitored along the scan line by Zetec
pipe scanner with 0.21 mm scan resolution. The specimen and
the inspection procedure is described in more detail in
(2018). The specimen and the scanner can be seen in
Figure[T]

For data efficiency, only a signle angle was used. The cho-
sen angle was the one, where the cracks were the most visible.
In this case, this was the 45 angle. As only one scan line was ac-
quired, the data was visualized and evaluated using B-scan im-
ages. Since the crack locations and sizes were precisely know,
the crack signals could be removed from the ultrasonic data to



create a blank canvas. Virtual flaw augmentation was used to
broaden the representative sizes of the cracks. The virtual flaw
software used was Trueflaw’s eFlaw. In this case, the eFlaw was
used with an assumption that signal amplitude is the most sig-
nificant feature of the crack signal from detection point of view.
Similar assumption is used in the signal response POD estima-
tion (@ vs. a). The eFlaw was used to modify and scale down
the original crack signal amplitude to represent different vari-
ety of cracks with smaller sizes than the original. This allows
creation of high amount of crack images required for POD esti-
mation and for teaching datasets for ML algorithms. Details of

the eFlaw technology are explained in [Virkkunen et al| (2014}
2016)); Svahn et al.| (2018)); Koskinen et al.| (2018)).

The teaching data set was created in same way as for testing
data set for human inspectors in previous paper
(2017). Once the teaching was finished, the ML algorithm was
tested with the same data as human inspectors faced. Thus, the
ML algorithm and human inspectors were given the exact same
information with the same controlled environment and a POD
curve was estimated based on the hit/miss results.

2.2. Training data and used data augmentation

The single 45°scan line data containing signals from three
manufactured thermal fatigue flaws was taken as the source data
for training the machine learning model. This is the same data,
that was used to generate human POD results in
2017). From this data, large number of data files were
generated using the same algorithm as previously. The data
contained 454 A-scans each containing 5058 samples with 16
bit depth.

For machine learning purposes, the data was further pro-
cessed, as follows; each A-scan was cut so that only the inter-
esting area around the weld was included resulting in 454 x 454
point data. Then, the resolution of the ultrasonic data was down
sampled to 256 x 256 points.

Altogether 20000 variations were generated to be used as
training and validation data. The data was stored in minibatches
of 100 UT-images per file with accompanying true state infor-
mation showing the included crack state present, if any. The
data set also contained information, where virtual flaw process
had been used to copy unflawed section to another location.
This was done to avoid and to detect the possibility that the
machine learning model would learn to notice the virtual flaw
introduction process, instead of the actual flaws.

2.3. Used ML architecture

The machine learning architecture used was based on the
VGG16 network (Zhang et al.,[2016). For ultrasonic data anal-
ysis, the basic network was augmented with a first max-pooling
layer, with pooling size adjusted to the wavelength of the ultra-
sonic signal. This max-pooling layer had the effect of removing
spectral information from the image so that the rest of the net-
work was left with an envelope amplitude curve. The effect of
this layer is shown in Figure 2| The training used binary cross
entropy as the cost function and training was done using the

RMSProp (Zeiler, 2012).

I
Max pooling 7 x 1

y

Crack indication

Figure 2: Max pooling was implemented as a first layer that removed the spec-
tral informmation and reduced dimensionality of the data.



Previous work (Chen and Lee} |1993; [Fei et al., 2006; Meng
et al.,|2017) typically extracted additional information from the
spectral content of the A-scan data using, e.g., the wavelet de-
composition. In this case, it was also considered to add addi-
tional data layers obtained with wavelet decomposition. How-
ever, the source data that was used for human inspectors was
rectified, which made obtaining any useful information from
the spectral content impossible. Since in this case, it was desir-
able to use data, that was directly comparable to the data seen
by the human inspectors it was decided to continue working
with the rectified data.

The data was read in the saved mini-batches, converted to
32 bit floating point numbers and normalized by subtracting
the mean and dividing by standard deviation. A small value
of 0.00001 was added to avoid division by zero.

The size of the various layers were originally excessive, and
as soon as successful training was obtained, the layer sizes were
decreased step-by-step to obtain the most efficient network ca-
pable of learning to classify the data. The full architecture (both
initial trial and final) is shown in Figure [3] The network expe-
rienced some sensitivity to initialization, and on repeated train-
ing, the model sometimes failed to learn successfully.

The computation was implemented with the Keras library
(Chollet et al.| 2015) using the TensorFlow back-end (Abadi
et al.l [2015)).

The chosen architecture does not make use of some of the
recent features included in state of the art deep convolutional
networks. The primary motivation for this was to keep the net-
work as simple as possible while showing good flaw detection
capability. Some of the considered, but not included, ML archi-
tectural features are discussed in the following.

Drop-out (Hinton et al., 2012) has been extensively used
to prevent overfitting, and more recently to estimate prediction
confidence (Zhu et al.| 2019). In the present study, the model
did not show susceptibility to overfitting. The likely reason for
this is the high number of augmented images used for train-
ing. Consequently, drop-out was not included and instead the
training was stopped after sufficient performance was achieved.
Training with smaller augmented data-sets could show overfit-
ting and, consequently, make use of drop-out. Furthermore,
even in the absense of overfitting, the use of drop-out to esti-
mate prediction accuracy is an interesting option especially in
case where multiple flaw types are classified within one model.

Batch renormalization has shown to improve trainability of
very deep networks (loffe and Szegedy,[2015)). While the present
network did show sensitivity to initialization values and some-
times failed to train successfully, this did not present signifi-
cant problem in this application. A simple re-try with different
random starting values quickly resulted in successful training
result.

Channel-wise training (Chollet, 2017b) has been used to
ease training and to improve training results in image classi-
fication. In the present case, the interesting channel-wise infor-
mation would be amplitude information (as used in the present
analysis) and frequency-related information, such as the wavelet
decomposed features used, e.g., by [Chen and Lee| (1993); [Fei
et al.| (2006). However, in this case, it was of interest to use as-
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Figure 3: The trained network stucture. Max pooling was implemented using
Keras MaxPooling2D layer. Convolution layers were implemented using Keras
Conv2D layer. The final dense layer was implemented with Keras Dense layer.



is the data that was used in previous research (Virkkunen et al.,
2017) to estimate human POD performance. As this data was
rectified, most of the spectral data was lost and could not be
used. Extracting spectral features using wavelet decomposition
as separate channels remains interesting option for further study
and may improve flaw detection.

2.4. Performance evaluation

In previous research (Virkkunen et al.l 2017) an online tool
for assessing inspector performance was developed. The tool
presents randomly generated B-scan data with implemented vir-
tual cracks and a possibility to change the software gain. In the
normal mode the inspectors select the locations of the cracks
and move on to the next image. In the learning mode feed-
back from the previous image is provided before moving to
the next image. The tool is publicly available at http://www.
trueflaw.com/truepod and http://www.trueflaw.com/
truelearnpod. Not all images include cracks. The results are
used to produce hit and miss POD-curve. In previous research,
nine level-1II ultrasonic inspection course attendees were ran-
domly split into two groups to use the learning mode and the
normal mode. Each inspector had time to practise with the tool
during the course. Finally each inspector analysed 150 images
and hit and miss POD-curve was generated. One inspector was
excluded from the data due to excessive amount of false calls.
For inspectors the best achieved agy/9s value was at 1 mm and
under 20 false calls. Most inspectors rated between 1 - 2.5 mm
agos9s and under 30 false calls. The lower-end inspectore got
agp/9s between 3.5 and 4.0 mm and the highest false call rates
were above 180. The number of false calls did not correlate
with inspection performance. While the online tool does not re-
flect realistic inspection situation, it allows relatively rapid and
cost-efficient gathering of relevant performance data. Inspec-
tion is often done in suboptimal conditions, and requires skilled
inspector. In addition, the rate at which flaws appear is low
making the already repetitive work even more tiring.

The target in this study is to assess the performance of the
ML model with regard to inspector performance. In addition to
the previous data, that included independent inspectors, a new
data set was generated. To get direct comparison between the
human inspectors and the ML model, a new set of 200 B-scan
images not used in the training of the ML model was generated
and a hit and miss POD-curve made for the ML model. A spe-
cialized version of the previously used online tool for POD eval-
uation was created with this data set. Human results were then
obtained from 3 experienced inspectors from VTT. The same
data-set was then given to the classifier network. This set-up
enabled direct comparison of human and machine performance
in a blind set-up. This data-set contained 200 images and 86
images with cracks. Both the humans and the ML-network had
opportunity to train with similar data and similar set-up. For
these data, the range of available inspectors is more limited, but
the data is even more comparable.
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Figure 4: Validation loss and validation accuracy during training for 100
epochs.

3. Results

3.1. Training results

The network was trained for 100 epochs of 10000 samples.
This resulted in perfect classification: all cracks were correctly
classified and no false calls were made. The evolution of the
training accuracy is shown in Figure [d] The number of train-
ing epochs was set by hand to stop slightly after perfect clas-
sification score was achieved. During development, the results
were evaluated against a separate validation set. The final result
was then evaluated against a previously unseen verification set.
Each set contained a 100 images, with roughly 50% cracks.

3.2. Comparison with human performance

To evaluate the network performance against human per-
formance, data set from previous work was utilized |Virkkunen
et al. (2017). In addition a new data set was generated for this
purpose (section [2.4).

The performance was evaluated using MIL-HDBK-1823a
hit/miss analysis (Annis| [2009). The performance comparison
is summarized in table[T} POD curve for the human inspectors
and the ML network are shown in images[5]and [6] respectively.
As noted in previous research, the cracks contained in the orig-
inal data presented different challenge in relation to their size.
This was primarily caused by the difference in relative ampli-
tude. The same crack was difficult for both the human inspec-
tors and the ML network. In the current data set, the small
number of initial flaws as well as their difference caused some
irregularities in the hit/miss performance, which the computed
confidence bounds to be rather wide. For one inspector, the hits
and misses did not show the expected crack size dependence.
This may have been caused by excessive false calls for the in-
spector. For the ML classifier, all the cracks were found. To get
convergence for the POD curve, 30 misses of zero-sized cracks
were added to all the results. This had the effect of improving
slightly the aggs95 values of the human inspectors and provid-
ing convergence for the ML-classifier even with all the cracks
found. In future studies, wider selection of physical cracks are
needed to avoid such problems.
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Figure 5: Example POD curve from a human inspector. Note, that additional
cracks were added at O crack length for comparability on ML-results. The
data shows anomalous POD-a dependence due to differences in detectability of
various natural cracks. In the future, this can be alleviated by additional cracks
to better cover variability in natural cracks.

100

IS
95 ¢
90

POD (%)

Flaw size (mm)

Figure 6: POD curve the machine learning classifier. Note, that additional
cracks were added at O crack length for convergence.

Table 1: Comparison of performance from human inspectors and machine
learning classifier. For ML classifier, all the cracks were found and smallest
found crack is shown as agg,95

Inspection agp/s0  False calls
Previousdata 1-2.5 130
Inspector 1 3.0 36
Inspector 2 2.7 917
Inspector 3 5.6 2
ML classifier 0.9 0

4. Discussion

The present study showed, that the current very deep ma-
chine learning networks are powerful enough to achieve super-
human performance on NDT-tasks previously considered in-
tractable, such as crack detection in ultrasonic signals. This
is, to the best of our knowlede, the first time that a direct com-
parison is published between human inspectors and machine-
learning classifiers. Achieving superhuman performance is an
important milestone, since it indicates that the machine learn-
ing networks can be used also in fields, where high reliability
is sought after and regulatory requirements mandate the use of
best available means, such as in the nuclear industry.

Data augmentation is a well known technology in the ML
literature and is commonly considered to be a key enabling
technique when working with limited data sets/Chollet (2017a).
Data augmentation has also previously used for NDT appli-
cations of ML (Munir et all 2018b). In present study, exten-
sive data augmentation was utilized using the previously devel-
oped virtual flaw technology. This allowed generating training
data, that incorporated many aspects of actual inspection, such
as the detection of flaw signals from varying backgrounds and
variations in probe contact, without extensive data base of real
cracks. This can be expected to yield ML-models that gener-
alize well to different real-world inspection cases. In addition,
the virtual flaw technology has been used in training human in-
spectors, and expected to be used in nuclear qualifications in
the near future. The use and extensive validation of the vir-
tual flaw technology in the case of human inspectors gives high
confidence that the augmented data sets are relevant also for
ML applications.

The results from present study indicate, that such domain-
specific and separately validated data-augmentation techniques
enabling technique for succesfully applying machine learning
in various NDE fields, where the data is scarse but performance
requirements high.

In previous work, the ML-classification of ultrasonic signal
is usually applied at the single A-scan level. In contrast, our
approach has been to train the network on full scan of 454 A-
scan lines. This approach necessarily limits the applicability
of the solution to mechanized or location-encoded inspections,
where such coordinated combination of A-scans is available.

The present work has some significant limitations. The raw
data contained only three real cracks, that were then modified
to give the total data set. This was similar for both the hu-



man inspectors and the machine learning solution. The natu-
ral flaws exhibit significant variation and a set of three flaws is
clearly insufficient to capture this variation. For example, the
ASTM POD standard (ASTM, 2015)) requires 30 cracks, which
is chiefly to to capture this variation. Thus the network trained
here is not expected to work as-is for more general crack de-
tection tasks. Instead, future research will extend the source
data using additional thermal fatigue cracks, simulated flaws
and other interesting signal types.

S. Conclusions
The following conclusions can be drawn from this study:

e Deep convolutional neural networks are powerful enough
to reach superhuman performance in detecting cracks from
ultrasonic data

e Data augmentation using virtual flaws is seen as key en-
abling technique to train machine learning networks with
limited flawed data

6. Data availability

The used python code as well as the training data set is made
available for download at https://github.com/iikka-v/
ML-NDT.
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