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Abstract 

 

Phased array ultrasonics have enabled the recording of ever-increasing amount of data 

from the inspection targets. With the latest advancements in total-focusing method with 

plane wave imaging the amount of data has increased exponentially when compared to 

conventional ultrasonic methods. As more data allows more reliable evaluation, the cost 

of evaluation also increases. Since there is more data for the inspector to evaluate, the 

inspector’s job becomes more difficult and laboursome with the modern technology. 

Moreover, as phased array techniques evolve to even more sophisticated approaches such 

as total focusing method and the latest form, plane wave imaging total focusing method 

(PWI-TFM) reading raw ultrasonic data is too convoluted for human inspectors. 

 

While the idea is to show pre-calculated image to the inspector, the data allows multiple 

different ways of presentation the data to the inspector, even though these representations 

are not normally used. Machine learning powered inspection enables the full use of all 

the data, while allowing the best possible presentation for the inspector. 

In this paper we demonstrate PWI-TFM inspection powered by machine learning model. 

The ML model is used to scan the data and present the flaw indications to the inspector. 

1.  Introduction 
 

The NDT industry is undergoing a significant digital transformation, with a growing 

emphasis on digital interfaces, storage, and offline analysis. In the realm of ultrasound 

inspection, this shift has led to the need for manual analysis of a substantially larger 

volume of data within a reasonable timeframe. Consequently, inspectors often find 

themselves merging multiple refraction angles to create a single image, with the danger 

of worsening the data quality or losing flaw indications altogether. Recent studies have 

also found that inspectors might unintentionally disregard some recorded data from the 

extreme angles, most like due to human error [1], [2]. Primarily because most of the data 

lacks any detectable indications, it is hard to keep focus constantly and only rarely 

actually findings something. In an attempt to save inspectors’ time on data analysis, the 

full potential of these advanced technologies is frequently underutilized. As a result, while 

these innovations offer increased sensitivity, they also introduce challenges and added 
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labour for inspectors. Which may be one of the reasons these new approaches are not 

actively adopted. 

 

Increasing computing power and digitalization in the ultrasonic inspection field has 

enabled significant advancements compared to single channel A-scans, which are still 

widely used today. While phased array, and more refined approach such as full-matrix-

capture (FMC) and total-focusing method (TFM) [3] have been available for many years, 

their adoption to the inspections has been slow. 

 

The main benefit in TFM technique is the high image quality due to spatial resolution and 

the total focus in the region of interest. Moreover, same array response may have various 

different imaging modes[4]. These imaging modes can include half-skips and mode 

conversions to facilitate data analysis and enhance the image. The reconstruction in TFM 

also allows the image to be wider than the original probe, as the image is reconstructed 

based on the echoes received from the elements and calculated based on the transmitting 

element [5]. However, TFM has some significant drawbacks which have possibly 

hindered the wider adoption. Firstly, TFM has low acoustic power as only one element is 

transmitting ultrasound to the target. Especially for attenuative materials such as 

austenitic stainless-steel welds, the signal-to-noise ratio (SNR) has been poor. In addition, 

weld inspection is more difficult since the acoustic power cannot be directed at an angle, 

but it propagates as a spherical wave to the crack causing artefacts, which may even lead 

to false calls [4], [6]. Second drawback is that TFM produces a lot of data and processing 

and storing of this data becomes a bottle neck, especially using larger probes with many 

elements [5]. 

 

The acoustic power can be increased using Sparse Matrix Capture (SMC), which also 

reduces the number of processed signals, reducing the data processing burden [7], [8]. 

However, the aperture is not ideal for beam steering for weld inspections and the 

technique is still lacking the proper acoustic power for highly attenuative materials. 

 

Plane Wave Imaging (PWI) [9], [10], recently developed in medical field and later tested 

for NDT applications [5], [11] seems promising to fix the shortcomings of traditional 

TFM and SMC. PWI is combination of the best practices from traditional phased array 

and TFM. In PWI, plane ultrasonic wave-fronts are transmitted through the medium at 

various angles. These angles are then reconstructed and focused to different depths 

incrementally. The angled transmission is possible due to utilization of the whole element 

array instead of a single element as in traditional TFM, furthermore all the elements are 

used in the receiving as well to further enhance the data output [5], [11]. These images 

are then summed together to form a final image. This leads to high image quality with 

significantly lesser number of ultrasonic shots than for traditional TFM [5], [11]. 

Moreover, as all the elements can be used in transmitting, the aperture stays large 

allowing further beam steering and keeping the acoustic power as high as possible. 

 

As modern techniques allow more novel data evaluation, modern inspection equipment 

allows recording of data in significantly larger quantities, such as increased number of 

angles and higher resolution with minor effect to data recording time. Moreover, 

extensive and high bandwidth data output streams data outward more than human 
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inspector could evaluate in days. Thus, edge computing and machine learning (ML) has 

the potential to help the inspector with modern techniques and high data output.  

 

The immense potential of ML lies in its ability to harness the vast reservoir of available 

data and present the outcomes in a lucid and responsive manner. We observe that ML 

has already made significant inroads into various industries, powering applications like 

speech recognition [12] and self-driving cars [13] in real-time. However, within the 

NDT industry, ML solutions constitute only a fraction of the overall landscape and even 

scarcer real-time applications. Despite numerous academic examples showcasing the 

integration of ML in ultrasonic inspection [14]–[17] its widespread adoption by the 

industry remains in its infancy. In this paper, demonstrate manual inspection ready 

concept with plane-wave imaging total-focusing-method (PWI-TFM) with wavelet 

transform filtering and real-time ML annotation. The demonstration is for austenitic 

base material with two different channels using 5 MHz 64 element linear phased array 

probe with a rexolite wedge. 

 

2.  Experimental setup 

 
The theoretical background for PWI is well explained in [5]. In traditional TFM the time-

of-flight from the transmitter with a spherical wave trough the target to the receiver is 

calculated one transmitter element at a time. Whereas, in PWI a set of 𝑄 plane waves at 

𝑄 angles are transmitted and the back scattered signals for every element 𝑁 is recorded. 

This creates data matrix 𝑄 × 𝑁. An algorithm was proposed in [5] which allows focus in 

every point within the Region of Interest (ROI). In addition, this allows to take into 

account the half-skip modes for crack like flaw indications, reconstruct the image outside 

the probe aperture and take into account the mode conversions [5]. 

 

The major difference between the TFM and PWI is that in PWI the wave propagation 

angle is known in PWI. This requires significantly less operations than TFM algorithm, 

thus computational burden is more manageable. [5] The amplitude A in a pre-determined 

point P in the imaging area is calculated for the set of Q angles is obtained with the 

equation below. 

 

𝐴(𝑃) = |∑ ∑ 𝑠𝑞𝑗(𝑡𝑞
𝑝
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Where 𝑡𝑞
𝑝
 is the time-of-flight of the plane wave at angle q to reach the point P. 𝑡𝑗

𝑝
is the 

time from the focusing point P to the receiving element j. N is the number of elements 

used in reception. 𝑠𝑞𝑗(𝑡) are transformed using Hilbert’s transform and summed together. 

As the angle q of the transmitted wave is known the time-of-flight calculation is a straight 

forward process. However, as the backscattered wave is cylindrical reception point has to 

be calculated using the traditional TFM approach with the Newton-Rhaphson algorithm. 

[5] 

 

Since plane waves are spatially limited, an effective area can be calculated from the 

transmission angle. This effective area can be used to apply the PWI algorithm only to 
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the points within the effective area. This helps to mitigate the effects of diffraction by the 

transducer edges or grating lobes [5]. Figure 1, shows the effective area at an angle and 

the image area in the specimen. 

 

As previous papers[5], [11] have used Hilbert’s transformation our reconstruction 

approached the algorithm without any transformation and with the wavelet 

transformation. In wavelet transformation the transformation happens on the time axle 

and does not affect the shape of the signal. The transformation is done with the help of a 

basis function, a “mother-wavelet” [18], [19]. This basis function has many options; 

however, Morlet wavelet seems to represent the ultrasonic signal typically the closest. 

 

 

 

 
Figure 1. Effective area smaller than the imaging area, which decreases as the 

angle increases. 

 

2.1 Hardware setup and test specimens 

 

In the experiment we used similar setup as in [11]. 64 element linear phased array with 5 

MHz central frequency. 19.56° rexolite wedge, provided by Dekra Industrial Finland and 

64 element phased array ultrasonic device Peak LTPA. The probe was moved manually 

without any encoder and water was used as a coupling medium. The data was fed from 

the Peak ultrasound to edge-computing unit TrueflawBox for data reconstruction and ML 

annotation. 

 

To train and test the machine learning model 20 mm thick austenitic steel plates were 

used. Thermal fatigue cracks with varying sizes were manufactured to the steel plates. 

 

2.2 Ultrasound setup and data reconstruction 

 

Three plane waves were used in transmission and reconstructing the image. Two 

longitudinal waves with 45° and 65° angles and a shear wave with 33° angle. The image 

area was set underneath the probe and slightly forward from the front of the probe. Figure 

2 displays the imaging area and the channels used in the scan. 
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Figure 2. Longitudinal waves 45°, 65°, shear waves 33° and the image area 

displayed. 

The reconstruction was made similar way as stated before. However, the summation of 

the amplitudes was done without the Hilbert’s transform. As Hilbert’s transform loses the 

frequency component, we dictated the data is better to present to the ML model without 

this transform. As the images kept relatively high signal-to-noise ratio (SNR) without this 

transform, we decided to leave it out from the image to be shown for the inspector as well. 

 

As there were only two separate angles and a total of three different channels used, we 

decided that instead of summing these three channels together the channels would be 

presented with different colours to the inspector in a single image. Moreover, there has 

been multiple occasions that the set angles do not match between the theory and reality, 

causing unnecessary artefacts, this representation would prevent such behaviour and 

produce clearer image. 

 

2.3 Machine learning 

In the plates there were 3 – 5 mm deep thermal fatigue cracks. In total of 3 cracks were 

used in training and two were left for testing of the model. While this is obviously not 

nearly enough flaw samples for proper ML model training it worked well as a 

demonstrator. 

 

The architecture was U-net type model, with the use of standard data augmentation, 

however, no virtual flaws were used in training. As the training data was originally too 

scarce the addition of virtual flaws would probably not have increased the model 

performance.  

 

As stated before, the channel data was not Hilbert transformed and were presented as 

three separate channels for the ML model. This would assure high data quality for the 

model, furthermore there would be no difficulties from artefacts caused by summation of 

the three separate channels together due to misalignment between the theoretical and real 

angles. Originally the input data was then reconstructed as stated before and 1024 × 512 

resolution images were created for the model to analyse. While the results and 

performance were sufficient for the said resolution. The resolution should be decreased 

to allow more channels and faster throughput in the future. Thus, the resolution then 

would be reduced down to 256 × 128 with wavelet transformation. Wavelet transform 

proved to be effective and lossless method of decreasing the resolution, while preserving 

the waveform information as well. As a mother wavelet, Morlet wavelet was chosen with 

the same frequency as the probe. However, as the central frequency of the probe was 5 
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Mhz, especially for the welds it was detected that around 2 Mhz frequency would reach 

back to the probe due to material characteristics. 

 

 

3.  Results and discussion 

 
The results from the uncompressed 1024 × 512 resolution performed well, as the thermal 

fatigue crack could be detected and the edge caused no false calls. Figure 3 demonstrates 

the reconstructed response from three different channels, without transformation and the 

channels displayed in different colours. In Figure 4 ML performance is demonstrated with 

the crack and with the edge. 

 

 
Figure 3. Combined view of the three different plane wave channels. 1) The crack 

indication. 2) Mode conversion from 65° longitudinal wave. 3) Mode conversion 

from 45° longitudinal wave. 
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a) 

 
b) 

Figure 4. Combined view with ML annotation. ML highlights the crack indication 

in a) but doesn’t highlight the mode conversions as intended. b) shows the corner, 

which the ML model does not annotate. 

 

The performance reached was 20 frames per second (FPS), as the resolution was fairly 

large for the ML model. The 1024 × 512 resolution as a single channel would cause no 

computational burden, but with the three separate channels the on-line annotation was 

capped at 20 FPS. While this is sufficient for this purpose, as higher framerate is not 

required to evaluate the dynamics of the signal, performance could decrease when larger 

number of different channels are added. Furthermore, adding more channels means more 

possibilities for the ML model to detect the defects thus, adding more channels should be 

beneficial for reliability. 

 

To decrease the resolution, wavelet transformation was used. While the wavelet 

transformation produces fairly similar outcome as the Hilbert’s transform, the benefits for 

machine learning are more advantageous. Firstly, the wavelet transformation can be used 

as a convolutional layer, which means with GPU acceleration this operation is extremely 

fast. Secondly, the wavelet transform preserves the frequency information unlike the 

Hilbert’s transform allowing more data to be sent to ML model. Moreover, the 

convolution area of the signal can be chosen more freely saving computational time. 

 

Using the wavelet transform, the final resolution could be reduced to 256 × 128 which 

saves the memory considerably compared to the original state. However, this did not 

directly translate to final FPS, since more optimizing should be performed on the other 

areas as well. 
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a)        b) 

 
c) 

Figure 5. Wavelet transformed data. a) The same data as in Figure 3, without ML 

annotation. b) ML annotated crack indication. c) The corner echo, which the ML 

model does not annotate. 

 

Figure 5 demonstrates the wavelet transformed images. While the resolution is 16 folds 

smaller than the original, the crack is still well visible. Although some noise seems to be 

highlighted with the wavelet, this is more of a probe issue rather than transformation 

issue. 

 

As the test sample set was too small to draw any performance related conclusions with 

the ML model, the performance stayed similar to the full resolution image. This indicates 

that the approach is viable to reduce the memory load and allow ever more channels and 

data to be fed for the ML model for higher reliability analysis. 

 

 

4.  Conclusions 
 

PWI-TFM operates well to identify crack like indications from austenitic material. The 

method works well without any transformations as only summation of the signals 

produces clear enough image for detection and image reconstruction.  However, wavelet 

transform can be used as a viable option to Hilbert’s transformation while decreasing  

image resolution. The wavelet transformation preserves data integrity and increases 

computational efficiency. This allows faster and real-time interface with the manual 

inspection and enables further ML integration to the inspection procedure. Moreover, we 

suspect that wavelet transform has the opportunity to be used in multiple different ways 

due to its nature, such as noise reduction, tough it is yet to be explored. 

 

As multiple channels can be recorded with the modern techniques these should be fed 

separately to the ML model for the optimal performance. This reduces the dangers of 

artefacts and presents the best possible data to the ML model for to train and to evaluate. 

The final output on the other hand should be combined as a single image for easier 

viewing for the inspector while still maintaining information about the origin of the 

signals. Thus, the inspection procedure should be designed such a way that ML model 

gets the best and broadest amount of data, while the inspector is enable to view the best 

possible data for flaw evaluation trough annotation and filtering of the data. 
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Lastly, edge computing has the opportunity to increase the adoptability and versatility of 

ultrasonic inspection considerably. This enables similar approach to use inspection 

procedures more like an application rather than a piece of paper. This mindset has the 

opportunity to faster adopt newer techniques in the field, as also to reduce human errors 

and the required expertise to utilize these novel approaches. 
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